
with a normal material, we may have the situation de­
picted by Fig. 12. The pertinent isentrope of the im­
pactor (x < 0) is labeled R and we see that, neglecting 
contact discontinuities, the instability does not develop 
in spite of the negative slope of the Hugoniot. In this 
case the slope of R is such that it intersects the isen­
trope 3 - 3' at an intermediate point; the acoustic wave 
is sufficiently weakened by transmission of energy 
across the boundary, x = 0, that there is a net diminu­
tion of the acoustic pulse with time. 

Because of the internal reflections at contact discon­
tinuities, it is not obvious that any of these cases is ei­
ther stable or unstable. We note, however, that these 
discontinuities appear with increasing frequency in the 
vicinity of the shock front as the interaction progresses. 
This "turbulence" may tend to isolate the region imme­
diately behind the front and reduce the influence of the 
rear boundary conditions. In that event all of the cases 
considered would be expected to be unstable. In any 
case, it seems clear that Ineq. (19) must be satisfied in 
order for a shock to be unconditionally stable. 

V. THERMODYNAMIC STABILITY 

To treat the shock stability problem by means of 
thermodynamics it is helpful to first consider a simpler 
problem in which two subsystems, each in internal 
equilibrium but not in mutual equilibrium, are allowed 
to interact. The initial thermodynamic states are the 
same as for the shock problem, but particle velocities, 
as well as heat conduction, are assumed negligible. 
There are then no mass or momentum fluxes to stabi­
lize the configuration and we inquire into the conditions 
obtaining as the system approaches mutual equilibrium. 
Figure 13 illustrates this situation. 

There are two ways to think about the static problem. 
In Fig. 14 we show a conceptual Rube-Goldberg device 
that permits the system to come to equilibrium while 
maintaining each subsystem in internal equilibrium. 
The insulated piston is attached to a paddle wheel en­
tropy-generator of zero-heat capacity that delivers heat 
to either subsystem in varying amounts. The heat flow 
is controlled by a valve that can be switched arbitrarily 
but, to maintain thermal isolation of the two subsys­
tems, must be considered to be always fully switched in 
one position or the other. Energy and volume of the en­
tire system are constant and each subsystem contains 
unit mass. 

As independent variables we choose the specific vol­
ume V and a reduced internal energy E', defined by 

Shock Front 

P,V,' I ~O"VO' '0 

Shock Confiourotion 

Moveoble 
Adiobatic Wall 

p. V po. Vo 

Static Confiouration 

FIG. 13. Shock and static configurations with same thermo­
dynamic states. 
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FIG. 14. Equilibration machine. Static configuration of Fig. 
13 approaches equilibrium while each subsystem remains in 
internal equilibrium. 

dE' =dE +PodV • (23) 

The differential of this quantity is therefore given by the 
change in internal energy less the work done on one 
subsystem by the other subsystem. We refer to it as 
the reduced internal energy. In mutual equilibrium, 
P=Po, dE= -PodV, and dE' = O. 

When the system is permitted to relax toward equi­
librium, we have 

dV+dVo=O, dE+dEo=O, 

and 

dE'=dE+PodV, dE~=dEo+PdVo' 

Invoking the requirement that each subsystem be in in­
ternal equilibrium implies 

dE=TdS-PdV 

and 

Hence, 

dE' = TdS - (p - Po)dV 

and 

Finally, energy conservation requires 

dE+dEo=O, 

or 

TdS+TodSo- (P-Po)dV=O , 

so that 

dE' = - TodSo , 

and 

dE~= - TdS • 

Moreover, 

TdS = (p - Po)dV - TodSo , 

and 

(24) 

(25) 

We now note that both conditions TdS ~ O and TodSo~O, 
must apply. Consequently, the approach to equilibrium 
is characterized by, from Eq. (24), 
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dS~O and dE':50. 

Equivalently, we can write, from Eq. (25), 

o ~ TdS ~ (P - Po)dV • 

(26) 

(27) 

Both inequalities in Eqs . (26) or (27) must hold if en­
tropy is to increase in each subsystem. The usual 
thermodynamic stability criterion for systems in equi­
librium states that the availability, defined by 

A=E-ToS+PoV, 

where To and Po are the temperature and pressure of 
the surroundings, considered to be reservoirs, is min­
imum in equilibrium. 11 In the present context this im­
plies 

dA =dE +PodV - TodS 

=dE' - TodS= - To(dSo+ dS) ~ 0 . 

This statement, however, is insufficient in that it does 
not specify that, in general, entropy must be produced 
in the surroundings as well as in the subsystem under 
consideration. For nonconducting systems we therefore 
take Ineq. (26) or (27), as the more complete statement 
of the Second Law. 

Another way to derive this result that is somewhat 
simpler is to allow the viscous entropy production to 
occur internally within each subsystem. We denote by 
~ the mechanical stress acting at the interface between 
the two subsystems and assume that each medium is 
sufficiently viscous so that stress equilibrium is main­
tained and the kinetic energy is negligible as the sys­
tems approach thermodynamic equilibrium. The equi­
librium pressure P is no longer the mechanical stress 
and is defined only by the equilibrium equation of state, 
i.e., P=P(V,E). 

We now have 

dE=-~dV , 

and 

dEo= - ~dVo=~dV , 

to be combined with the equilibrium relations 

dE=TdS-PdV, dEo=TodSo-PodVo. 

This gives 

TdS=-(~-P)dV, TodSo=(~-Po)dV. 

We now require that entropy be produced in each sub­
system, so that 

-(~-P)dV ~ O, (~-Po)dV ~ O. 

Hence, if dV > 0, we must have 

Po ~ ~ ~ P . 

This relation implies that during the approach to equi­
librium 

o ~ TdS ~ (p -Po)dV , 

and 

dE' = - (~-Po)dV ~ 0 

as before. 
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We now apply this result, Ineqs. (26) or (27), to the 
shock stability problem. Differentiating the expression 
for the Hugoniot surface, Eq. (3), gives 

or 

dE=~(Vo- V)da-~(a+Po)dV , 

dE' =dE +PodV =H(Vo - V)da - (a - Po)dV] 

= ~ (Vo- V)(da-j2dV) • (28) 

From Eq. (8) we note that this is also equal to the dif­
ferential of the kinetic energy density, ~(u - UO)2. We 
can also express this equation in terms of V and S as 
independent variables by means of the transformation 

dE' = TdS - (P - Po)dV • 

In invoking this equation we do not imply that the Hugo­
niot surface is a thermodynamic equilibrium surface. 
Equation (28) then becomes, 

TdS= ~ (Vo - V>[da - 02 
- 2~= ~O»)dVJ • (29) 

The Hugoniot P-V curve is defined by the intersection 
of the Hugoniot surface with the equilibrium surface. 
Hence, along this curve, a=P and Eqs. (28) and (29) 
reduce to 

dE' =1- (Vo - V)[(dP/ dV)H -l]dV , 

and 

TdS=~(Vo- V)[(dP/dV)H+j2]dV • 

We now posit the following: 

POSTULATE: A shock transition from an initial 

(30) 

(31) 

state to a given final state is thermodynamically un­
stable if there exists a neighboring final state on the 
Hugoniot curve for which the entropy is larger and the 
reduced internal energy smaller than for the given state. 

According to this postulate, shocks are thermody­
namically unstable when thermodynamically permissible 
adiabatic fluctuations, i. e., satisfying Ineq. (27), about 
a shocked state can occur that result in a new state also 
compatible with the jump conditions . By "thermody­
namically unstable" we mean that the system is unsta­
ble given fluctuations of sufficient magnitude, in accord 
with the usual thermodynamic point of view. 

From Ineq. (26) or (27) we can derive necessary con­
ditions for stability. Since P> Po, we consider only 
dV > 0 and Eqs. (30) and (31) are incompatible with 
Ineq. (26) when 

(-~~t ~ O, ~(:~t ~j2, (32a) 

or 

T(dS) ~ O ~(dP) ~ -J.2 
\dV H ' dV H • 

(32b) 

These can be combined in the statement 

which is exactly the result obtained for stability with 
respect to acoustic amplification, Ineq. (19). 
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